
Database	Pricing:	The	Public	Cloud	and	Its	Impact	
	

Hakan	Jakobsson	
hakan@hakan-jakobsson.com	

	
Version	2015-08-01	

Introduction	
The	impact	of	the	public	cloud	will	be	huge	for	any	of	the	established	IT	companies	
and	not	necessarily	in	a	good	way.	They	would	include	the	likes	of	IBM,	HP,	Oracle,	
Dell,	and	Microsoft	as	well	as	many	others.	Of	the	old-guard	players,	Microsoft	is	
probably	furthest	along	in	the	public	cloud	game	with	Azure	but	hasn’t	been	able	to	
reestablish	the	“evil	empire”	status	it	used	to	have	in	the	tech	world	in	the	1990s.	
Instead	the	dominant	player	is	Amazon	Web	Services,	which	is	interesting	given	that	
Amazon	didn’t	start	out	as	an	IT	vendor.		Other	old-school	vendors	are	busily	
jumping	into	the	cloud	game	to	prove	that	they	are	not	dinosaurs	with	Oracle	taking	
on	AWS	on	pricing	for	tape-based	cloud	storage.		
http://www.theregister.co.uk/2015/06/23/ellison_aws_price_war_amazon/	
	(Image	wise,	that	may	not	be	the	best	choice	of	battleground	if	you	want	to	prove	
that	you’re	not	a	dinosaur.)	
	
Pricing	is	an	important	component	in	the	database	market,	but	it’s	hardly	something	
that	can	be	considered	in	isolation	from	issues	such	as	features	and	functionality,	
support,	third-party	ecosystem,	etc.	And	database	software	is	extremely	sticky;	
switching	costs	are	high	enough	that	a	minor	difference	in	price	or	performance	–	
say	30	percent	–	is	unlikely	to	persuade	any	sane	customer	to	switch	out	a	well-
functioning	production	system.	But	a	price	difference	of	an	order	of	magnitude	or	
more	is	bound	to	have	customers	take	notice,	especially	customers	who	are	merely	
looking	for	mainly	basic	functionality.	For	all	the	headlines	about	companies	with	
extreme	data	sizes	or	transaction	rates,	it’s	worth	remembering	that	it’s	probably	
the	outliers	that	are	making	the	headlines	and	that	a	large	fraction	of	the	market	
tends	to	be	more	vanilla.	
	
Another	issue	that	is	worth	noting	is	one	of	transparency	and	openness.	The	old	
world	of	enterprise	software	sales	was	vey	much	one	of	proprietary	software	being	
sold	by	directs	sales	people	and	subject	to	all	kinds	of	negotiations	about	discounts.	
That	world	is	increasingly	being	challenged	by	open-source	software	and	pricing	
transparency.	In	the	cloud,	AWS	does	a	pretty	good	job	of	being	transparent.	And	
there	are	user	communities	eager	to	share	tips	about	how	to	get	the	most	mileage	
out	of	the	different	AWS	pricing	options	(on-demand,	spot	price,	reserved	instances,	
etc.).	That	model	is	a	universe	away	from	having	to	negotiate	your	prices	with	the	
software	equivalent	of	a	used-car	salesman.	Now,	AWS	is	expanding	into	the	
traditional	enterprise	software	space	with	professional	services,	direct	sales	people	

and	negotiated	deals	(if	they	are	large	enough),	but	the	official	prices	are	probably	
pretty	competitive	and	you	can	always	look	up	the	prices	of	competitors	like	Azure.		
	
Still,	as	we	will	note,	there	are	cloud	service	providers	that	are	less	transparent	than	
AWS	but	likely	at	their	own	peril.	A	ZDNet	article	on	the	subject	quotes	several	
surveys	showing	that	transparency	is	important	to	IT	decision	makers.	“Greater	
visibility	is	key	if	cloud	is	to	move	forward	as	a	key	technology	resource.	In	the	
Forrester	survey,	60	percent	of	IT	leaders	say	lack	of	transparency	has	hindered	their	
plans	to	expend	cloud	adoption.”	according	to	the	article.	
http://www.zdnet.com/article/wanted-more-transparency-into-cloud-costs-and-
usage-patterns/	
	
Likely,	competition	and	smaller	deal	sizes	will	gradually	erode	opaque	pricing	
policies	in	the	public	cloud.	Opaque	pricing	only	makes	sense	if	you	want	to	get	a	
salesperson	involved	but	that	may	not	be	cost	effective	if	the	cloud	service	is	
sufficiently	inexpensive.	

Changing	pricing	dynamics	
The	dynamics	of	database	pricing	can	change	over	time	and	that’s	hardly	a	new	
phenomenon.	In	the	1990s,	Microsoft	SQL	Server	emerged	as	a	less	expensive	
entrant	in	the	database	market	and	a	growing	threat	to	the	established	vendors	as	
its	scalability	and	functionality	gradually	improved.	During	the	height	of	the	dotcom	
boom,	Oracle	running	on	Solaris	on	top	of	large	SMPs	from	Sun	Microsystems	was	a	
popular	combination	among	startup	companies.	After	the	dotcom	bust,	that	
combination	fell	out	of	favor	as	“free”	open-source	software	gained	in	popularity,	
and	startups	might	be	running	MySQL	on	Linux	on	less	expensive	hardware.	The	
popularity	of	MySQL	didn’t	go	unnoticed	among	the	large	database	vendors	and	in	
the	2005-2006	timeframe,	Microsoft,	Oracle,	and	IBM	all	introduced	free	versions	of	
their	database	software	with	the	word	“Express”	in	the	name.	The	threat	from	
MySQL	wasn’t	just	about	price	but	also	convenience.	Many	companies	have	very	
bureaucratic	procedures	for	software	procurement,	and	a	developer	needing	a	
database	for	a	pilot	project	might	find	it	easier	to	just	download	MySQL	than	going	
through	the	approval	process	to	get	an	Oracle	license	even	if	the	company	was	an	
Oracle	shop.	The	Express	editions	were	an	attempt	to	prevent	that	from	happening	
by	providing	a	freely	downloadable	version	of	the	database	suitable	for	prototyping	
but	artificially	constrained	so	that	it	would	be	incapable	of	running	larger	
production	workloads.		
	
Today,	cloud	computing	has	become	the	computational	paradigm	of	choice	for	many	
startups	as	well	as	for	many	new	projects	within	established	companies.	As	cloud	
computing	is	increasingly	gaining	momentum,	its	competitive	landscape	is	emerging	
complete	with	some	rather	disruptive	pricing.	

Cloud	adoption:	the	carrot	and	the	stick	
As	established	IT	vendors	are	aggressively	trying	to	position	themselves	as	having	a	
major	presence	in	the	cloud,	the	question	becomes	how	to	actually	establish	such	a	
presence.	AWS	has	very	significant	lead	over	established	IT	vendors	in	cloud	
functionality	and	a	gigantic	lead	in	mindshare	among	Silicon	Valley	startups.	So	
where	are	the	established	vendors	going	to	get	their	cloud	revenue?	Acquiring	cloud	
companies	seems	to	be	one	popular	approach,	but	it’s	expensive,	cloud	companies	
with	high	revenue	are	in	limited	supply,	and	acquisitions	don’t	lend	that	much	
credibility	to	the	cloudiness	of	a	vendor’s	established,	core	technology.	
	
So	obviously,	vendors	are	looking	to	take	their	existing	on-premises	install	base	to	
the	cloud.	This	is	where	the	carrot	and	stick	problem	comes	into	play.	Established	
vendors	may	go	heavy	on	the	stick,	both	on	their	salespeople	and	customers,	
because	using	a	carrot	is	tricky.	
	
It	has	been	claimed	that	Microsoft	throws	in	Azure	into	deals	for	little	or	no	extra	
cost	even	if	the	customer	has	no	plans	to	use	it.	Just	having	an	unused	cloud	
component	as	part	of	a	deal	may	be	insufficient,	however,	in	terms	of	credibility	and	
could	create	accounting	issues	relating	to	revenue	recognition.	So	supposedly,	
Microsoft	is	pressuring	its	sales	force	to	make	sure	that	customers	actually	consume	
their	cloud	credits	by	making	cloud	consumption	goals	part	of	the	salespeople’s	
compensation	plans.		
http://www.businessinsider.com/microsofts-cloud-consumption-problem-2015-3	
	
Oracle,	it	has	been	claimed,	uses	audits	of	customers’	use	of	its	software	to	find	
breaches	where	a	customer	has	used	software	beyond	the	licensing	terms	and	is	
threatened	with	dramatic	consequences	unless	it	buys	cloud	licenses	that	it	might	
not	really	want.	
http://www.businessinsider.com/oracle-is-using-the-nuclear-option-to-sell-its-
cloud-software-2015-7	
	
Regardless	of	the	veracity	of	the	claims	of	a	somewhat	heavy-handed	use	of	the	stick	
to	promote	cloud	adoption,	it’s	pretty	obvious	why	using	a	carrot	is	tricky	for	
established	vendors.	IT	organizations	are	extremely	risk	averse	for	good	reasons.	
Switching	an	existing	production	system	to	a	new	computing	platform	is	a	high-risk	
proposition	that	also	comes	with	significant	cost.	Even	doing	new	projects	in	the	
cloud	has	cost	related	to	establishing	new	procedures,	acquiring	new	skill	sets,	etc.	
The	most	obvious	candidate	for	a	carrot	would	be	if	the	risk	and	cost	associated	
with	going	to	the	cloud	would	pay	off	in	significantly	lower	cost	going	forward.	In	
other	words,	a	customer	might	be	more	likely	to	embrace	the	cloud	if	the	result	is	
that	it’s	going	to	pay	the	IT	vendor	a	whole	lot	less	money.	The	IT	vendor	may	not	be	
all	that	enthusiastic	about	the	prospect	of	reduced	revenue	and	will	be	reluctant	to	
make	its	cloud	pricing	sufficiently	attractive	until	forced	to	do	so	by	competition	
from	pure	cloud	vendors	that	don’t	have	cannibalization	issues.	So	for	now,	it’s	

likely	that	the	stick	will	be	an	important	part	of	how	established	vendors	promote	
cloud	adoption.	

Redshift	as	a	baseline	for	cloud	pricing	
There	are	many	types	of	database	processing	available	as	cloud	services,	but	in	what	
follows,	we	restrict	ourselves	to	data	warehousing	as	a	service	(DWaaS)	and	use	
Amazon	Redshift	as	an	example	of	the	disruptive	impact	of	the	public	cloud.	Redshift	
is	a	managed	relational	database	service	for	data	warehousing.	When	it	was	rolled	
out	in	2012,	it	came	with	the	catchy	pricing	of	$1,000	per	TB	per	year	for	a	managed	
service.	(It	applied	to	a	certain	instance	type	with	a	three-year	commitment;	other	
instance	types	were	and	are	more	expensive.)	That	price	point	made	people	take	
notice	since	it	was	generally	considered	that	running	a	data	warehouse	would	cost	
one	to	two	orders	of	magnitude	more	if	you	did	it	in	your	own	datacenter.	And	it	
made	Redshift	the	fastest	growing	service	in	AWS	history.	It	lacks	quite	a	few	of	the	
features	of	the	more	mature	databases,	like	Oracle,	DB2,	and	Microsoft	SQL	Server,	
but	the	stuff	it	was	designed	to	do	–	very	fast	basic	SQL	queries	involving	table	scans	
against	very	large	datasets	–	it	does	very	well.	It	was	originally	created	as	a	
proprietary	database,	ParAccel,	by	modifying	an	open-source	one	(Postgres).	In	that	
sense,	it	may	well	fit	in	with	current	trends.	In	the	years	before	the	Redshift	rollout,	
several	upstart	data	warehousing	companies	like	DATAllegro,	Greenplum,	Vertica,	
and	Aster	Data	were	acquired	by	bigger	players	like	Microsoft,	EMC,	HP,	and	
Teradata	in	deals	typically	in	the	$200-$400	million	range.	Amazon	bought	the	right	
to	the	ParAccel	source	code	for	a	tiny	fraction	of	that.	Redshift’s	sweet	spot,	scans	of	
very	large	tables,	may	be	only	one	of	many	possible	sweet	spots	in	the	DWaaS	
market	space,	but	one	that	fits	well	with	the	Zeitgeist	of	the	era	of	“Big	Data.”	
	
Let’s	look	at	the	current	Redshift	pricing:	If	you	use	a	Redshift	cluster	with	
ds2.8xlarge	nodes,	each	node	comes	with	24	2-TB	disks	for	a	total	of	48	TB	of	raw	
storage.	It	also	comes	with	36	cores	and	244	GB	of	memory.	Of	the	48	TB	of	raw	
disk,	AWS	figures	that	one	third	will	go	to	temporary	space	needed	to	perform	large	
sorts	or	joins,	to	the	operating	system,	etc.	That	leaves	32	TB	for	user	data	in	the	
actual	database	tables,	but	because	the	data	is	mirrored,	that	space	is	reduced	by	a	
factor	of	two	to	16	TB.	So	that’s	what	AWS	advertises	as	the	capacity	of	a	node.	Cost	
per	node	with	a	three-year	commitment:	$44,840	if	you	pay	upfront	for	the	three	
years.	That	comes	to	$934	per	TB	per	year.	
	
What	about	data	compression?	Some	vendors	like	to	incorporate	compression	into	
their	marketing	pitch	and	make	some	assumptions	about	compression	ratios	when	
describing	the	capacity	of	a	system.	While	those	assumptions	may	often	be	
believable	and	perhaps	conservative,	the	fact	that	AWS	doesn’t	do	so	in	its	$1,000-
per-TB-per-year	marketing	pitch	feels	refreshing.	And	Redshift	supports	all	kinds	of	
data	compression,	but	in	AWS	marketing,	that’s	just	icing	on	the	cake.		
	
At	this	point,	it	should	be	emphasized	that	the	Redshift	pricing	is	not	based	on	the	
amount	of	data	that	is	stored	per	se	–	something	one	might	be	led	to	believe	by	the	

phrase	“$1,000	per	TB	per	year.”	Rather,	the	pricing	is	based	on	instance	type	and	
type	of	commitment.	And	each	instance	type	comes	with	a	certain	number	of	cores,	
a	certain	amount	of	memory,	and	a	certain	amount	of	storage,	so	the	per	TB	price	is	
derived	from	the	characteristics	of	the	instance	type.	This	point	is	important	when	
comparing	Redshift	to	products	with	very	different	pricing	models.	

Oracle	the	old	way	
Now	let’s	consider	Oracle,	the	market	leader	in	database	software	using	its	
traditional	pricing	for	software	licenses.	In	this	case,	we	will	notice	that	the	per-
processor	pricing	is	based	on	the	number	of	cores	of	the	database	server,	not	the	
amount	of	data	in	the	database.	So	let’s	price	out	Oracle	for	the	same	AWS	hardware	
on	a	per	node	basis	using	Oracle’s	price	list	using	the	kind	of	Redshift	node	that	can	
hold	16	TB	of	user	data	at	$16,000	per	year.	
http://www.oracle.com/us/corporate/pricing/technology-price-list-070617.pdf	
	
You	would	probably	want	the	Enterprise	Edition	of	the	database	with	the	RAC	and	
Partitioning	options	at	the	very	minimum.	RAC,	since	we	are	running	on	a	cluster;	
Partitioning,	since	Redshift	has	range-restricted	scans.	Oracle	has	many	other	
options	as	well,	but	let’s	stick	to	those.	The	per-processor	license	comes	to	$47,500	
+	$23,000	+	$11,500	per	Oracle’s	price	list.	Now	multiply	that	by	the	number	of	
cores,	36,	and	apply	the	core	factor.	The	lowest	core	factor	I	have	seen	in	Oracle’s	
official	listing,	which	lists	it	for	different	types	of	hardware,	is	0.25.	So	let’s	go	with	
that	number	and	that	brings	us	to	$730,800	per	node	in	upfront	license	fees	just	for	
the	software.	You	will	have	to	pay	for	the	hardware	as	well.		
	
But	wait,	Oracle	also	charges	annual	fees	for	“Software	Update	License	&	Support”	
that	are	22	percent	of	the	initial	license	fees.	Doing	the	math	for	the	annual	fees,	we	
get	$160,776	per	year.	So	for	a	node	with	16	TB	of	user	data,	the	mere	maintenance	
fees	would	runt	at	over	$10,000	per	TB	per	year	just	for	the	database	software.	
	
Now	it	should	be	said	that	nobody	pays	Oracle	the	full	list	price.	There	are	discounts	
and	larger	deals	are	usually	carefully	negotiated.	However,	Redshift	is	a	managed	
service	whereas	if	you	get	Oracle,	you	have	to	pay	people	to	do	management	tasks	
that	the	AWS	infrastructure	will	do	for	you	for	free.	And	that	infrastructure	has	
great	economies	of	scale.	And	we	still	haven’t	included	any	hardware	cost	for	Oracle.	
Even	if	you	believe	that	Oracle	is	a	better	product	with	more	bells	and	whistles	than	
a	Swiss	Army	knife,	people	are	likely	to	ask	themselves	if	it’s	worth	the	high	cost.	
	
So	from	a	pure	price	perspective,	things	don’t	look	too	good	for	Oracle.	Could	Oracle	
match	the	Redshift	price	point?	That	would	take	a	huge	toll	on	Oracle’s	earnings,	
sales	force	compensation,	and	lead	to	all	kinds	of	internal	turmoil.		

Database-as-a-service	pricing	
In	order	to	compare	Redshift	to	DWaaS	offerings	from	other	vendors,	some	
background	discussion	about	database	architecture	might	be	useful.	Other	vendors	
often	have	different	pricing	models	with	separate	costing	for	processing		(or	
“compute”)	and	storage.	To	what	extent	such	pricing	makes	sense	is	dependent	on	
database	architecture	and	factors	that	also	impact	important	cloud	concepts	such	as	
elasticity.		
	
One	service	offering	that	doesn’t	separate	processing	and	storage	cost	is	Oracle’s	
Exadata	Service,	part	of	Oracle’s	cloud	initiative.	Instead,	pricing	is	for	a	quarter,	
half,	or	full	rack	each	with	a	certain	number	of	cores	and	a	certain	amount	of	
memory	and	storage	space.		That	model	has	some	similarities	to	how	Redshift	is	
priced	by	instance	type.	So	we	will	discuss	the	history	and	architecture	behind	
Exadata	as	a	background	for	examining	pricing	models.	
	

Exadata	background	
Before	Oracle	rolled	out	its	Exadata	product	in	2008,	Oracle	databases	essentially	
consisted	of	servers	connected	to	disk	arrays	where	Oracle	was	just	a	piece	of	
software	on	the	servers.	Oracle,	with	its	history	of	portability,	would	support	all	
kinds	of	hardware	combinations	and	actual	Oracle	data	warehouses	were	often	
great	examples	of	that.	An	IT	department	might	have	different	preferred	vendors	for	
different	kinds	of	hardware,	e.g.,	HP	for	servers,	EMC	for	storage,	Cisco	for	
networking	equipment,	etc.	Often,	different	people	would	be	in	charge	of	each	area	
leading	to	potential	political	conflicts	when	deciding	on	the	hardware	components	
of	the	database.	Dealing	with	sales	people	from	different	vendors	with	different	
agendas	probably	didn’t	make	design	decisions	any	easier.	Quite	often,	the	result	
was	an	unbalanced	configuration	where	some	component	was	undersized	relative	
to	the	others	leading	to	obvious	performance	bottlenecks.	Such	scenarios	were	one	
motivating	factors	behind	Exadata	since	Oracle	was	competing	against	database	
appliance	vendors,	like	Netezza,	that	were	selling	hardware	and	software	bundled	in	
supposedly	completely	balanced	configurations.	
	
Another	consideration,	perhaps	more	important	for	the	purpose	of	this	discussion,	
was	the	utilization	of	the	disk	array	CPUs.	Disk	arrays	would	have	CPUs	that	would	
mainly	be	responsible	for	storing	or	retrieving	data	on	the	disks	as	requested	by	the	
software	on	the	servers.	As	CPUs	were	getting	faster,	it	was	natural	to	consider	
using	them	for	something	more	intelligent	than	just	processing	I/O	requests	from	
the	server.	The	storage	CPUs	had	a	much	more	direct	connection	to	the	data	on	the	
disks	than	the	database	server	CPUs,	so	it	was	natural	to	consider	using	them	for	
some	form	of	database	functionality.	One	type	of	functionality	that	was	considered	
and	implemented	was	the	ability	to	filter	out	data	that	wasn’t	needed	when	
processing	a	database	query.	A	database	table	might	have	many	columns,	but	a	
given	query	might	only	need	a	small	subset	of	them.	The	same	query	might	also	
contain	conditions	that	only	a	subset	of	the	rows	in	the	table	would	satisfy.	So	rather	
than	sending	the	entire	table	to	the	database	server	and	have	the	server	CPU	figure	

everything	out,	the	storage	CPU	could	figure	out	what	part	of	the	data	was	relevant	
and	only	send	that	subset	to	the	server.	That	required	the	storage	CPUs	to	run	code	
that	would	understand	Oracle’s	block	format	and	could	evaluate	query	conditions	–
code	that	had	previously	only	been	executed	on	the	server.	The	benefit	was	a	
reduction	in	the	workload	on	the	server	CPUs	and	a	reduction	in	the	amount	of	data	
that	had	to	be	sent	over	the	interconnect	to	the	server,	and	the	result	was	a	very	
large	performance	improvement.		
	
However,	pushing	some	of	the	database	processing	into	the	storage	cells	meant	that	
processing	and	storage	were	no	longer	as	separated	as	before;	they	were	tied	
together	in	the	interest	of	superior	performance.	
	
So	how	do	the	two	processing	models,	Oracle	Exadata	and	Oracle	non-Exadata,	
relate	to	pricing	models	for	cloud	services?	When	processing	and	storage	are	
bundled	together	physically,	it	makes	more	sense	to	charge	for	the	chunk	of	
hardware	that	performs	both	duties	rather	than	trying	to	separate	them	out.	
Redshift,	where	the	data	is	stored	on	local	disks,	bundles	processing	and	storage	
physically	and	is	priced	per	node.	The	pricing	unit	for	Oracle’s	Exadata	Service	is	a	
rack,	which	is	also	a	processing	and	storage	bundle.			
	
Architectures	with	storage	and	processing	in	separate	components	would	be	more	
natural	candidates	for	pricing	models	based	on	the	usage	of	the	individual	
components.	One	could,	of	course,	measure	the	usage	of	Redshift	CPUs	that	are	tied	
to	storage	and	charge	for	the	CPU	time	used.	But	if	the	CPUs	are	so	tightly	tied	to	the	
storage	that	they	couldn’t	be	used	for	other,	unrelated,	purposes,	what	would	the	
point	be	of	charging	for	their	usage	separately	from	storage?	
	
The	discussion	about	separation	of	processing	and	storage	also	ties	into	the	
important	cloud	concept	of	elasticity,	the	ability	to	allocate	more	resources	when	
you	need	them.	From	a	pricing	standpoint,	the	converse	is	just	as	important:	If	you	
can	deallocate	resources	when	you	don’t	need	them,	you	don’t	have	to	pay	for	them.		
	
Storage	elasticity	is	harder	than	processing	elasticity	if	performance	is	a	factor,	as	it	
tends	to	be.	If	the	data	is	distributed	between	the	disks	for	optimal	performance,	
changing	the	number	of	disks	may	require	redistributing	the	data,	a	process	that	can	
be	time	and	resource	consuming.	Increasing	or	decreasing	the	processing	power	in	
the	form	of	the	number	of	CPUs	is	relatively	easy	if	the	compute	nodes	are	separate	
from	the	storage	nodes	and	the	interconnect	never	becomes	a	bottleneck.	Hence,	
Redshift’s	bundled	architecture	is	arguably	less	elastic	than	architectures	where	the	
processing	power	can	be	changed	without	affecting	storage,	and	competitors	have	
been	using	that	in	their	marketing.	However,	the	separation	of	computation	from	
storage	is	subject	to	both	limitations	and	tradeoffs,	something	that	we	will	discuss	in	
the	next	section.	And	a	very	crude	separation	could	still	be	done	with	Redshift:	
Archive	your	rarely	used,	historical	data,	on	dirt-cheap	AWS	storage	outside	of	
Redshift.	On	the	rare	occasions	you	need	that	data,	spin	up	some	Redshift	nodes	and	
import	the	data	for	processing.	That’s	hardly	a	fast	and	convenient	process,	but	

likely	inexpensive.	While	Redshift	is	$1,000	per	TB	per	year	for	storage	and	
processing,	pure	storage	is	about	$360	per	TB	per	year	on	S3	and	$120	on	Glacier.	
	

Locality	tradeoffs	
In	a	perfect	world,	there	would	be	no	benefits	to	locality	between	CPUs	and	disks.	
Storage	would	just	be	the	same	black	box	for	all	processing	units,	and	processing	
units	would	be	allocated	as	needed	–	why	pay	for	unused	processing	power	for	large	
amounts	of	historical	data	if	the	data	mainly	just	sits	there	on	disk	and	you	very	
rarely	query	it?	That’s	a	large	part	of	the	selling	point	of	separate	processing	and	
storage	pricing	but	it	only	makes	sense	if	the	underlying	architecture	supports	the	
separation	so	that	the	pricing	separation	is	in	line	with	the	service	provider’s	cost	
for	the	service.	
	
Intuitively,	it	would	stand	to	reason	that	doing	processing	in	direct	proximity	to	disk	
would	have	very	substantial	performance	benefits	and,	historically,	that	has	very	
much	been	the	case.	However,	arguments	have	been	made	that	things	could	be	
changing.	Network	speed	is	increasing	at	a	faster	rate	than	disk	transfer	times	
diminishing	the	difference	between	a	local	and	a	remote	disk	access;	increased	use	
of	compression	to	handle	large	data	volumes	has	an	impact	on	the	tradeoff	between	
disk	storage	and	CPU	cycles	for	compression	and	uncompression	and	making	disk-
I/O	relatively	less	important.	So	go	some	of	the	arguments.	
	
An	AWS	blog	post	about	new	instance	types	
http://blogs.aws.amazon.com/bigdata/post/Tx3RD6EISZGHQ1C/The-Impact-of-
Using-Latest-Generation-Instances-for-Your-Amazon-EMR-Job	
compared	the	performance	of	the	old	instance	type,	m2.2xlarge,	and	the	newer	
r3.xlarge	for	a	certain	task.	The	blog	post	suggested	that:	“It	seems	to	be	a	common	
assumption	that	you	get	better	performance	when	data	is	local	to	the	cluster	vs	being	
remote	in	Amazon	S3.”	In	the	subsequent	comparison	between	m2.2xlarge	using	
local	storage,	m2.2xlarge	using	S3,	and	r3.xlarge	using	S3,	S3	very	much	held	its	
own,	possibly	debunking	the	“common	assumption.”	
	
Well,	not	so	fast.	The	old	m2.2xlarge	has	a	single	850-GB	disk.	So	S3	had	no	problem	
competing	with	a	single	disk	drive.	But	what	about	a	cluster	of	100	Redshift	nodes	
with	a	total	of	2,400	local	disks?	Could	you	just	hook	up	your	100	nodes	to	S3	and	
hope	to	scan	your	tables	just	as	fast?	Probably	not.	Those	2,400	Redshift	HDDs	that	
would	come	with	100	nodes	are	a	reflection	of	the	fact	that	you	have	100	nodes	and	
that	Redshift	will	stripe	the	data	over	all	of	them.	(Well,	except	the	leader	node.)	So	
you	have	3,600	cores	sucking	data	from	2,400	local	disks	as	opposed	to	from	S3.	
That	may	make	a	difference.	
	
So	part	of	the	performance	issue	with	elasticity	is	related	to	how	the	data	is	
distributed.	If	Redshift’s	elasticity	model	had	been	to	add	a	new	node	as	needed	and	
put	all	the	new	data	on	that	node,	elasticity	would	be	easy	but	performance	would	
suffer.	Database	queries	primarily	tend	to	involve	recent	data	and	in	this	elasticity	

scenario	where	new	data	would	involve	a	new	node,	other	nodes	wouldn’t	be	able	
be	able	to	contribute	their	processing	muscle	without	expensive	data	reshuffles	
between	nodes	during	query	execution.	Instead,	Redshift	distributes	the	data	over	
all	nodes	so	that	queries	against	the	newly	loaded	data	can	easily	take	advantage	of	
the	processing	power	of	all	nodes.	That	model	has	its	own	set	of	issues,	but	it	does	
allow	for	superior	single-query	performance	at	the	cost	of	making	elasticity	more	
cumbersome	–	when	you	add	a	node,	the	existing	data	needs	to	be	redistributed.	
	
The	fundamental	observation	about	locality,	as	in	using	local	disks,	is	that	it’s	about	
the	scalability	of	performance.	At	the	high	end,	compute-storage	separated	
architectures	may	have	difficulties	competing,	both	in	general,	but,	perhaps	more	
particularly,	on	price.	However,	in	the	scenarios	where	compute-storage	separation	
is	feasible,	there	is	no	doubt	that	there	are	advantages	when	it	comes	to	pricing	and	
elasticity.	
	
When	it	comes	to	pure	scalability,	locality	is	king	for	pure	mathematical	reasons.	
Let’s	say	you	have	one	node	with	local	disks.	As	long	as	every	disk	access	you	need	is	
local	to	every	node,	you	can	scale	that	single	node	to	1,000	nodes	at	essentially	a	
linear	cost.	But	what	if	you	have	a	model	of	a	black	box	of	compute	units	
communicating	with	a	black	box	of	storage	units.	The	complexity	of	communicating	
between	x	compute	nodes	on	the	compute	side	and	y	storage	nodes	on	the	storage	
side	becomes	related	to	x*y	if	you	want	performance	to	stay	exactly	the	same.	Not	a	
happy	development	as	x	and	y	grow	large.	
	
So	database	architectures,	like	shared-disk,	where	you	typically	separate	processing	
and	storage	are	great	when	you	can	get	away	with	it.	So	the	question	is	how	big	is	
the	part	of	the	market	where	you	can	get	away	with	it	and	how	big	is	the	part	of	the	
market	where	you	can’t	for	scalability	reasons.	A	historical	comparison	would	be	the	
debates	in	the	1990s,	both	in	academia	and	in	the	commercial	marketplace,	between	
proponents	of	shared-disk	and	shared-nothing	database	architectures.	As	database	
sizes	continued	to	grow	larger	and	larger,	some	shared-nothing	proponents	
declared	that	their	architecture	was	the	only	way	to	go.	Still,	thanks	to	continuous	
hardware	improvements	and	software	innovations,	Oracle	with	its	shared-disk	
architecture	did	pretty	well	in	keeping	up	with	the	increasing	data	volumes	and	
managed	to	increase	its	market	share.	Today,	both	architectures	are	very	much	
alive.	
	

Lack	of	price	information	
One	difficulty	in	comparing	DWaaS	pricing	is	that	some	vendors	either	don’t	publish	
a	pricelist	or	fail	to	give	the	technical	specifics	of	what	you	get	for	the	price.	That	is	
surprising	for	two	reasons.	

1. It	makes	those	vendors	that	are	less	than	forthcoming	with	information	look	
shifty	compared	to	those	that	openly	publish	prices	and	technical	
specifications	like	AWS	and	Oracle;	one	can	hope	that	competitive	pressure	
will	gradually	force	increased	openness.	

2. The	reason	for	opaqueness	is	obviously	to	get	salespeople	involved,	but	a	
heavy	involvement	of	salespeople	may	not	be	a	sustainable	model	given	the	
deal	sizes.	In	traditional	database	sales,	you	would	often	have	long	sales	
cycles,	time-consuming	proofs	of	concepts,	price	negotiations,	etc.	handled	by	
a	direct	sales	force.	But	direct	sales	are	costly	and	require	relatively	large	
deal	sizes	to	be	profitable.	It’s	also	harder	to	scale	up	your	sales	if	it	requires	
hiring	and	training	more	salespeople.	That’s	why	the	preferred	sales	model	
for	the	smaller	deals	would	be	to	use	other	types	of	sales	channels.	If	in	the	
public	cloud,	the	DWaaS	deal	size	for	a	10	TB	data	warehouse	is	$10,000	per	
year	in	revenue,	there	is	little	room	for	paying	a	whole	lot	to	sales	people	to	
get	involved.	AWS	can	achieve	a	large	volume	of	such	deals	with	minimal	
involvement	of	sales	people,	which	makes	you	wonder	how	well	those	
vendors	that	cannot	do	so	will	be	able	to	compete.	

	

Exadata	Service	pricing	
Having	discussed	Exadata	extensively,	we	can	now	look	at	how	Oracle	prices	it	as	a	
service	and	compare	it	to	Redshift.	
	
Oracle’s	smallest	unit	of	Exadata	Service	is	a	Quarter	Rack,	which	can	have	a	
minimum	of	28	“OCPUs”	and	a	maximum	of	68	priced	at	$5,000	per	OCPU	per	
month.	So	for	the	minimum	configuration,	that’s	$140,000	per	month	or	$1,680,000	
per	year.		
https://cloud.oracle.com/database?tabID=1406491812773	
	
A	Quarter	Rack	comes	with	42	TB	of	“usable	storage.”	It’s	not	clear	whether	some	of	
that	would	have	to	be	used	for	things	like	temp	space,	but	let’s	say	it’s	all	for	the	
user’s	table	data.	That	would	come	to	$40,000	per	TB	per	year	–	quite	a	bit	more	
than	Redshift.		
	
It	should	also	be	noted	that	Oracle’s	Exadata	Service	isn’t	a	managed	service	in	the	
same	sense	as	Redshift.	However,	Oracle’s	website	has	managed	service	as	a	“future	
direction”	that	will	include	Oracle-managed	backups,	patching,	and	upgrades,	
functionality	that	is	already	part	of	Redshift’s	managed	service.	
	

Teradata	pricing	
Teradata	doesn’t	need	much	introduction.	It’s	one	of	the	major	players	in	data	
warehousing	with	a	hardware-software	combination	product	that	is	considered	
solid	albeit	very	pricey.	It	also	offers	data	warehousing	as	a	cloud	service	with	
published	pricing.	It’s	pricing	is	per	Cloud	Compute	Unit	(CCU),	which	comes	with	a	
certain	amount	of	both	processing	power	and	storage	just	like	the	Exadata’s	racks	
and	Redshift’s	cluster	nodes.		
	
Teradata	doesn’t	tell	us	exactly	what	a	CCU	is	(It	wouldn’t	be	like	them	to	volunteer	
such	useful	information.),	but	we	learn	from	the	FAQ	that	it	comes	with	4TB	of	

usable	storage	(before	compression)	and	that	Teradata	recommends	using	at	least	
two	for	failover	protection.	So	it	sounds	a	lot	like	nodes	in	a	cluster,	which	is	exactly	
what	you	would	expect	based	on	Teradata’s	architecture.	Pricing:	Teradata	has	a	
pricing	option	based	on	a	three-year	commitment	just	like	Redshift.	Per	CCU,	it’s	
$24,000	in	reservation	fee	and	$3,700	per	month.	Over	three	years,	that’s	a	total	of	
$157,200	or	$13,100	per	TB	per	year.	That’s	14	times	more	than	Redshift’s	current	
$934	per	TB	per	year	although	I’m	sure	Teradata	will	tell	you	that	it’s	worth	every	
penny.	
http://www.teradata.com/Layouts/IndustryLayout.aspx?pageid=12884910014	
	
One	would	wonder,	however,	how	genuinely	interested	Teradata	is	in	actually	
selling	its	cloud	service	as	opposed	to	having	one	just	to	reassure	its	customers	that	
the	company	is	on	top	of	recent	technology	trends.	The	trailblazing	adopters	of	the	
public	cloud	are	often	into	openness	and	transparency.	Teradata	seems	to	extend	its	
old-school	IT	sales	tactics	–	if	you	want	any	useful	information,	you	need	to	talk	to	a	
sales	rep	–	to	its	cloud	service.	And	even	at	$13,000	per	TB	per	year,	it	may	still	be	
preferable	for	Teradata	to	have	a	sales	rep	try	to	nudge	a	potential	customer	to	go	
with	an	on-premises	solution.	Very	likely,	Teradata	itself	doesn’t	have	any	definite	
answers	as	to	how	to	best	deal	with	the	disruption	that	the	public	cloud	is	causing.	

Google	Cloud	BigQuery	pricing	
Google’s	BigQuery	is	the	external	implementation	of	Dremel	as	a	cloud	service.	The	
pricing	is	interesting	in	that	it	separates	storage	from	processing,	but	not	by	
charging	for	processing	CPU	power.	Instead,	the	processing	part	is	based	on	how	
much	of	the	base	data	is	needed	to	resolve	a	query.	The	storage	part	is	simple,	$0.02	
per	GB	per	month	or	$20	for	storing	1	TB	for	a	month.	Not	too	bad.	
https://cloud.google.com/bigquery/pricing	
	
The	query	part	makes	things	more	interesting,	$5	per	scanned	TB.	That	means	that	
it	only	takes	4	queries	scanning	the	1	TB	that	you	just	uploaded	to	cost	you	as	much	
as	storing	it	for	a	month.	Many	production	data	warehouses	have	many	hundreds	of	
canned	reports	that	are	routinely	executed	as	queries	against	the	newly	loaded	data	
every	night.	Most	will	probably	not	need	all	the	columns	of	every	table	containing	
the	new	data,	but	they	might	access	previously	loaded	data	in	the	form	of	reference	
data	about	products,	customers,	etc.,	as	well	as	historical	data	for	time-period-over-
time-period	comparisons.	All	of	that	makes	it	hard	to	predict	the	cost	of	Google’s	
offering.	If	you	want	to	use	it	as	a	write-only	database,	it	seems	pretty	reasonable.	
Less	so	in	so	far	you	want	to	do	serious	query	processing.	
	
Another	aspect	is	the	whole	quirkiness	surrounding	the	idea	of	charging	queries	by	
the	underlying	data	needed.	To	quote	from	the	pricing	URL	above:	“When	you	run	a	
query,	you're	charged	according	to	the	total	data	processed	in	the	columns	you	select,	
even	if	you	set	an	explicit	LIMIT	on	the	results.”	So	if	you	join	two	data	sets	of	1	TB	
each	in	the	columns	you	need,	the	size	of	the	result	could	theoretically	be	1	TB	
squared	or	1	trillion	TB	(if	you	could	join	the	data	sets	on	a	per-byte	basis).	So	if	
Google	were	able	to	perform	such	a	query	(unlikely)	and	were	to	charge	you	for	the	

size	of	the	output	(either	sent	back	to	the	users	or	used	as	the	input	of	another	
database	operation	like	a	another	join	or	a	GROUP	BY),	you	would	have	used	up	$5	
trillion	of	your	startup’s	Series	A	funding	on	just	one	database	query.	Fortunately,	
Google	uses	the	input	sizes	of	a	query	rather	than	the	output	sizes	for	its	costing,	but	
this	somewhat	unrealistic	example	shows	that	the	input	sizes	of	a	query	are	not	
always	a	good	measure	of	the	actual	processing	cost	that	has	to	be	paid	for	by	
someone.		
	
Another	issue	is	how	well	the	pricing	matches	up	with	customer	expectations.	Two	
example	queries	from	Google’s	price	list	are	
	
SELECT corpus, word FROM publicdata:samples.shakespeare
LIMIT 1
and	
SELECT COUNT(*) FROM publicdata:samples.shakespeare WHERE
corpus = 'hamlet'
	
Google	tells	us	that	the	cost	of	either	query	would	be	based	on	the	total	size	of	the	
underlying	columns	even	though	there	are	plenty	of	database	query	processing	
techniques	that	could	theoretically	have	resolved	these	two	queries	without	
necessarily	scanning	the	entire	underlying	dataset.		
	
So	the	Google	query	pricing	has	three	obvious	issues:	

1. Does	it	strike	the	right	balance	between	storage	and	processing	to	be	
attractive?	

2. Does	anyone	who	is	not	a	SQL	guru	understand	it?	
3. Does	it	accurately	reflect	the	cost	to	Google	of	executing	the	query?	

	
The	second	question	is	important	because	charging	based	on	scanned	data	sizes	
takes	pricing	based	on	usage	in	an	interesting	direction	and	one	that	a	lot	of	people	
might	have	a	hard	time	understanding.	If	you	want	to	charge	for	processing,	
compute	time	might	be	a	more	intuitive	concept.	If	you	charge	by	time,	a	customer	
will	know	in	advance	how	much	it	will	cost	to	run	a	workload	for	three	hours.	Cost	
based	on	the	amount	of	data	scanned	seems	harder	to	predict.	It’s	very	possible	that	
the	Google	pricing	model	is	too	convoluted	for	its	own	good.		
	
The	third	question	is	important	since,	most	of	the	time,	a	business	would	probably	
want	to	charge	its	customers	based	on	the	underlying	cost	plus	a	markup.	So	how	
well	does	the	price	Google	charges	you	for	a	query	track	the	actual	cost	to	Google?	
The	first	question	one	would	ask	is	this:	If	a	user	is	querying	the	data	interactively	
and	there	is	a	lull	between	queries,	can	Google	use	the	hardware	resources	for	other	
purposes	or	will	they	just	be	idle?	If	they	just	sit	idle	and	without	the	user	paying	for	
any	scan	cost,	it’s	a	bad	fit	for	the	cost	to	Google.	Other	than	that,	my	take	is	that	the	
cost	model	is	a	very	rough	approximation	of	the	cost	to	Google	since	it	doesn’t	take	
into	account	the	work	needed	for	operations	like	joins	and	GROUP	BY	aggregation	
or	for	functions	used	in	queries.	If,	at	some	point,	the	SQL	supported	were	to	get	

extended	to	allow	user-defined	functions	in	queries,	arbitrarily	compute-intensive	
functions	could	be	evaluated	for	every	single	data	item	scanned	so	the	current	
model	wouldn’t	be	a	great	fit	for	that.	So	the	query-processing	cost	model	is	
probably	less	exact	and	more	confusing	than	simply	charging	for	compute	resources	
based	on	the	time	they	are	allocated.	
	

Microsoft	Azure	SQL	Data	Warehouse	
Microsoft	uses	separate	storage	and	processing	when	it	comes	to	pricing	and	
elasticity	as	a	major	selling	point.	Clearly,	Redshift	is	the	target.	
https://awsinsider.net/articles/2015/04/30/microsoft-data-warehouse.aspx	
	
So	what	is	the	pricing?	According	to	the	Azure	website,	it’s	$521	per	month	per	
100	DWUs	for	processing	while	the	service	is	in	preview	mode.	
	
So	what	exactly	is	a	DWU	of	which	you	get	100	per	month	for	$521?	According	to	
the	FAQ:	
	
-What	is	a	DWU	(Data	Warehouse	Unit)?	
	

	 As	part	of	providing	a	more	predictable	performance	experience	for	customers,	
SQL	Data	Warehouse	is	introducing	the	Database	Warehouse	Unit	(DWU).	A	
DWU	represents	the	power	of	the	query	performance	and	is	quantified	by	
workload	objectives:	how	fast	rows	are	scanned,	loaded,	and	copied.	This	
measure	helps	a	customer	assess	the	relative	amount	of	performance	needed	
for	their	SQL	Data	Warehouse.		

	
Yep,	that’s	what	a	DWU	is.	In	case	you	thought	of	Teradata	as	being	the	king	of	the	
less-than-forthcoming	vendors	and	Google	as	being	confusing,	think	again!		
	
From	http://azure.microsoft.com/en-us/pricing/details/sql-data-warehouse/	
	

	
	
	
The	storage-pricing	link	is	to	the	standard	Azure	storage	page	where	pricing	comes	
to	a	few	hundred	dollars	per	TB	per	year	depending	on	the	type	of	redundancy.	
	

Using	AWS	as	your	hardware	
In	theory,	you	can	run	your	own	database	on	top	of	AWS	and	that	raises	the	
question	of	what	the	cost	of	the	hardware	rent	is	for	running	a	database	on	EC2.		
There	are	DWaaS	vendors	who	use	AWS	as	their	hardware	platform	so	one	could	
ask	if	you	want	to	run	on	EC2	on	Redshift-like	hardware,	how	much	would	you	have	
to	pay	Amazon?		
	
Redshift’s	below	$1000	per	TB	per	year	price	is	based	on	the	instance	type	
ds2.8xlarge	with	a	three-year	commitment	that	costs	$44,840	for	the	three	years	if	
paid	upfront.	EC2	has	an	instance	type	called	d2.8xlarge	that	is	the	equivalent	of	
ds2.8xlarge	in	terms	of	cores,	memory,	and	disks.		Three-year	upfront	cost:	$41,650.	
That’s	93	percent	of	Redshift.	The	on-demand	prices	come	in	at	$6.80/h	and	$5.52/h	
for	an	81	percent	ratio.	The	smaller	HDD-based	instance	ds2.xlarge	and	its	EC2	
cousin	d2.xlarge	have	similar	ratios.	The	two	SDD-based	instance	types	don’t	seem	
to	have	any	exact	EC2	equivalents	but	we	could	compare	dc1.8xlarge	(32	cores,	
244GB	memory,	2.56TB	user	data	SSD	space)	and	the	EC2	instance	i2.8xlarge	(32	
cores,	244	GB	memory,	6.4TB	raw	SSD	space).	In	this	case,	the	EC2	instance	comes	
in	at	12-42	percent	more	expensive	than	Redshift	depending	on	pricing	type.	
	
	So	just	renting	the	hardware	might	cost	you	at	least	80	percent	of	the	cost	of	getting	
Redshift	as	a	managed	service.	And	Redshift	will	do	automatic	backups	to	S3	
without	charging	you	for	the	S3	space.	With	your	own	database,	you	probably	would	

have	to	pay	for	the	S3	space	and	pay	for	someone	doing	the	backups	for	you	as	well	
as	performing	other	tasks	that	will	be	included	in	the	Redshift	price	as	a	managed	
service.	So	if	all	you	are	doing	is	something	that	is	a	good	fit	for	Redshift,	there	
would	be	very	little	upside	in	running	your	own	database	on	top	of	AWS	hardware.	
Vendors	that	provide	DWaaS	had	better	come	up	with	significant	differentiators	
that	would	allow	for	charging	a	premium	compared	to	Redshift	since	Redshift’s	
pricing	won’t	lend	itself	to	huge	margins.		
	
AWS	has	significant	expertise	in	building	infrastructure	for	automating	the	
management	of	its	gigantic	infrastructure	and	can	get	tremendous	economies	of	
scale	for	the	managed-service	aspect	of	Redshift	as	well	as	from	its	gigantic	
hardware	infrastructure	–	the	economies	of	scale	that	allow	Amazon	to	sell	Redshift	
at	low	price	and	still	make	a	profit.	Redshift	builds	on	the	AWS	infrastructure	for	
provisioning,	billing,	etc.	with	some	Redshift-specific	extensions	related	to	database	
operations	like	backup	and	recovery.	Vendors	who	want	to	offer	their	own	DWaaS	
product	running	on	AWS	must	duplicate	some	of	the	“as-a-service”	infrastructure	
that	is	already	in	place	for	Redshift	that	lets	AWS	manage	its	customers	and	the	
customers	manage	their	databases.	In	addition,	the	database	technology	itself	had	
better	be	either	better	than	or	different	from	Redshift	and	any	new	database	
offering	AWS	might	be	working	on	in	secret.	The	possibility	of	AWS	working	on	new	
services	should	not	be	forgotten	if	you	want	to	avoid	getting	blindsided	by	it.		
	
Let’s	do	some	math.	Let’s	say	that	your	company	is	providing	DWaaS	on	top	of	AWS	
and	uses	a	Redshift-like	pricing	of	$1,000	per	TB	per	year.	The	company	manages	to	
attract	1,000	customers,	each	with	a	100-TB	data	warehouse.	Most	database	
companies	that	started	in	the	last	20	years	haven’t	been	nearly	that	successful.	
Netezza,	which	managed	to	go	public,	had	373	customers	in	2010,	the	year	it	was	
acquired	by	IBM.	But	let’s	say	1,000	customers.	That	would	give	you	$100	million	in	
annual	revenue.	If	Amazon	siphons	off	80	percent	of	that	in	hardware	rent,	you	are	
left	with	$20	million	per	year,	not	a	whole	lot	given	the	success	of	the	company.	In	
traditional	software	sales,	once	you	had	paid	off	the	cost	of	development,	each	
additional	license	sale	was	very	profitable	if	you	used	inexpensive	sales	channels.	In	
the	world	of	DWaaS,	it	will	be	less	so	if	you	have	to	pay	an	Amazon	tax	at	a	marginal	
rate	of	80	percent	on	every	additional	revenue	dollar.	
	
In	any	case,	competing	with	AWS	with	services	similar	to	what	AWS	is	offering	
doesn’t	seem	like	a	business	model	with	very	large	margins.	Differentiation	would	
be	the	key	and	it	seems	like	compute-storage	separation	for	pricing	and	elasticity	
and	support	for	semi-structured	data	and	external	data	sources	are	the	most	
popular	differentiation	candidates	right	now.	

BitYota	
Founded	in	2011,	BitYota	rolled	out	its	DWaaS	offering	at	the	AWS	re:Invent	
conference	in	2012	apparently	unaware	that	AWS	would	introduce	Redshift	at	the	
very	same	event.	The	underlying	database	technology	is	apparently	based	on	
Postgres	and	runs	as	a	service	on	top	of	both	AWS	and	Azure.	BitYota’s	marketing	

emphasizes	the	separation	of	storage	and	processing	without	specifying	the	cost	for	
either.	Initial	press	reports	mentioned	a	starter	service	with	10	ECUs	of	computing	
power	and	500	GB	of	storage	for	$1,500	per	month.	
http://www.theregister.co.uk/2012/11/28/bityota_saas_data_warehouse_service/	
	
This	article	from	2014	claims	20	employees	and	$12	million	in	funding.	
http://www.enterpriseappstoday.com/data-management/startup-spotlight-
bityotas-data-warehouse-as-a-service.html	

Snowflake	 	
Snowflake	is	another	DWaaS	company	that	runs	its	offering	on	top	of	AWS.	Separate	
storage	and	processing	elasticity	is	emphasized	as	a	selling	point.	Unlike	BitYota,	the	
founders	were	aware	Amazon	was	developing	Redshift	prior	to	founding	the	
company	in	2012.	There	doesn’t	seem	to	be	any	published	pricing.	As	of	June,	2015,	
it	has	received	$71	million	in	funding	and	has	75	employees.		
http://fortune.com/2015/06/23/big-data-startup-snowflake/	
	
According	to	its	CEO:	“So	far,	80	customers	have	signed	up	to	use	Snowflake,	and	as	
many	as	20	have	moved	beyond	the	testing	phase.”	
http://recode.net/2015/06/23/big-data-startup-snowflake-raises-45-million-
launches-first-product/	

Conclusion	
The	AWS	Redshift	data-warehouse-as-a-service	offering	is	likely	an	example	of	how	
public	cloud	computing	will	be	highly	disruptive	over	time,	although	of	all	its	impact	
won’t	be	felt	overnight.		The	enormous	economies	of	scale	enjoyed	by	AWS	
combined	by	the	fact	that	it’s	not	cannibalizing	any	of	its	on-premises	software	
products	(since	there	aren’t	any)	will	likely	disrupt	the	likes	of	Oracle,	Microsoft,	
IBM,	and	Teradata	over	the	next	5-10	years.	Database	software	tends	to	be	
extremely	sticky	and	customers	will	be	reluctant	to	swap	out	existing	systems,	so	
the	disruption	will	mainly	be	in	setting	price	levels	for	new	deals.	Vendors	that	want	
to	offer	data	warehousing	as	a	service	had	better	figure	out	how	to	differentiate	
their	products	from	Redshift	if	they	want	good	margins.	
	
There	are	also	implications	for	business	models.	Traditionally,	software	has	had	
very	high	margins	when	sold	in	large	enough	quantities	since	the	cost	of	creating	
additional	copies	of	software	in	negligible.	Selling	the	same	software	as	a	service	
requires	providing	additional	hardware	resources	for	each	new	customer,	
something	that	has	an	impact	on	how	margins	work	out.	Moreover,	the	deal	sizes	
involved	and	sales	structure	as	subscriptions	rather	than	license	sales	may	impact	
the	roles	and	involvement	of	sales	people.	One	can	also	note	that	if	AWS	charges	
customers	$10,000	per	year	to	run	a	10	TB	data	warehouse,	that	cost	will	likely	be	a	
small	fraction	of	the	cost	the	customer	will	have	for	the	people	that	design,	operate,	
and	use	the	data	warehouse,	not	to	mention	the	cost	for	other	BI-related	software	
that	might	be	involved.	

	
	
	
	
	

